21 research outputs found

    Data-Centric Governance

    Full text link
    Artificial intelligence (AI) governance is the body of standards and practices used to ensure that AI systems are deployed responsibly. Current AI governance approaches consist mainly of manual review and documentation processes. While such reviews are necessary for many systems, they are not sufficient to systematically address all potential harms, as they do not operationalize governance requirements for system engineering, behavior, and outcomes in a way that facilitates rigorous and reproducible evaluation. Modern AI systems are data-centric: they act on data, produce data, and are built through data engineering. The assurance of governance requirements must also be carried out in terms of data. This work explores the systematization of governance requirements via datasets and algorithmic evaluations. When applied throughout the product lifecycle, data-centric governance decreases time to deployment, increases solution quality, decreases deployment risks, and places the system in a continuous state of assured compliance with governance requirements.Comment: 26 pages, 13 figure

    Outcome-Guided Counterfactuals for Reinforcement Learning Agents from a Jointly Trained Generative Latent Space

    Full text link
    We present a novel generative method for producing unseen and plausible counterfactual examples for reinforcement learning (RL) agents based upon outcome variables that characterize agent behavior. Our approach uses a variational autoencoder to train a latent space that jointly encodes information about the observations and outcome variables pertaining to an agent's behavior. Counterfactuals are generated using traversals in this latent space, via gradient-driven updates as well as latent interpolations against cases drawn from a pool of examples. These include updates to raise the likelihood of generated examples, which improves the plausibility of generated counterfactuals. From experiments in three RL environments, we show that these methods produce counterfactuals that are more plausible and proximal to their queries compared to purely outcome-driven or case-based baselines. Finally, we show that a latent jointly trained to reconstruct both the input observations and behavioral outcome variables produces higher-quality counterfactuals over latents trained solely to reconstruct the observation inputs

    System Design for an Integrated Lifelong Reinforcement Learning Agent for Real-Time Strategy Games

    Full text link
    As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment.Comment: The Second International Conference on AIML Systems, October 12--15, 2022, Bangalore, Indi

    A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

    Full text link
    Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.Comment: To appear in Neural Network

    Adversarial Policy Switching with Application to RTS Games

    No full text
    Complex games such as RTS games are naturally formalized as Markov games. Given a Markov game, it is often possible to hand-code or learn a set of policies that capture the diversity of possible strategies. It is also often possible to hand-code or learn an abstract simulator of the game that can estimate the outcome of playing two strategies against one another from any state. We consider how to use such policy sets and simulators to make decisions in large Markov games. Prior work has considered the problem using an approach we call minimax policy switching. At each decision epoch, all policy pairs are simulated against each other from the current state, and the minimax policy is chosen and used to select actions until the next decision epoch. While intuitively appealing, we show that this switching policy can have arbitrarily poor worst case performance. In response, we describe a modified algorithm, monotone policy switching, whose worst case performance, under certain conditions, is provably no worse than the minimax fixed policy in the set. We evaluate these switching policies in both a simulated RTS game and the real game Wargus. The results show the effectiveness of policy switching when the simulator is accurate, and also highlight challenges in the face of inaccurate simulations
    corecore